Optimization problems with decomposable structure

Jalal Kazempour
Technical University of Denmark (DTU)
After this session the participants are expected to be able to:

- Explain the need for decomposition

- Identify whether each optimization problem is decomposable or not (if so, how?)
Decomposition

Main idea

Original (non-decomposed) optimization problem with decomposable structure

Decomposition

Decomposed optimization problem 1
Decomposed optimization problem 2

\[\cdots \]
Decomposed optimization problem \(n \)

Each decomposed problem is easier-to-solve than the original (non-decomposed) problem!

Jalal Kazempour
• Why do we need decomposition in power systems?
Decomposition

Motivation

- Why do we need decomposition in power systems?
 - Operation problems (e.g., unit commitment)
 - Planning problems (e.g., expansion)
Why do we need decomposition in power systems?

- Operation problems (e.g., unit commitment)
 - Need to be computationally tractable
 - Need to be solved in a specific time period

- Planning problems (e.g., investment)
 - Need to be computationally tractable
Optimization problems with decomposable structure:

- Problems with complicating variable(s):

- Problems with complicating constraint(s):
Decomposition

Decomposable structure

Optimization problems with decomposable structure:

- Problems with complicating variable(s):
 The original problem is decomposed if the complicating variables are fixed to given values!

- Problems with complicating constraint(s):
 The original problem is decomposed if the complicating constraints are relaxed (removed)!
Decomposition
Decomposable structure

Optimization problems with decomposable structure:

- Problems with complicating variable(s):
 The original problem is decomposed if the complicating variables are fixed to given values!

- Problems with complicating constraint(s):
 The original problem is decomposed if the complicating constraints are relaxed (removed)!

In the literature, “complicating” variables/constraints are also called as “coupling” variables/constraint!

Jalal Kazempour
Decomposition

Features of decomposition techniques

- Iterative solution techniques

- Original optimization problem decomposes to:
 - A single master problem (not always!)
 - A set of subproblems
Decomposable Structures

Optimization problems with complicating constraint(s)

Example: A linear programming (LP) as the original problem
Decomposable Structures

Optimization problems with complicating constraint(s)

Example: A linear programming (LP) as the original problem

Minimize

\[A_1 x_1 + A_2 x_2 + A_3 x_3 + B_1 y_1 + B_2 y_2 + C_1 z_1 + C_2 z_2 + C_3 z_3 \]

Subject to

\[E_{11} x_1 + E_{12} x_2 + E_{13} x_3 \geq F_1 \]
\[E_{21} x_1 + E_{22} x_2 + E_{23} x_3 \geq F_2 \]
\[E_{31} y_1 + E_{32} y_2 \geq F_3 \]
\[E_{41} z_1 + E_{42} z_2 + E_{43} z_3 \geq F_4 \]
\[E_{51} z_1 + E_{52} z_2 + E_{53} z_3 \geq F_5 \]
\[E_{61} x_1 + E_{62} x_2 + E_{63} x_3 + E_{64} y_1 + E_{65} y_2 + E_{66} z_1 + E_{67} z_2 + E_{68} z_3 \geq F_6 \]
Decomposable Structures

Optimization problems with complicating constraint(s)

Example: A linear programming (LP) as the original problem

Minimize \[A_1 x_1 + A_2 x_2 + A_3 x_3 + B_1 y_1 + B_2 y_2 + C_1 z_1 + C_2 z_2 + C_3 z_3 \]

Subject to

\[
\begin{align*}
E_{11} x_1 + E_{12} x_2 + E_{13} x_3 & \geq F_1 \\
E_{21} x_1 + E_{22} x_2 + E_{23} x_3 & \geq F_2 \\
E_{31} y_1 + E_{32} y_2 & \geq F_3 \\
E_{41} z_1 + E_{42} z_2 + E_{43} z_3 & \geq F_4 \\
E_{51} z_1 + E_{52} z_2 + E_{53} z_3 & \geq F_5 \\
E_{61} x_1 + E_{62} x_2 + E_{63} x_3 + E_{64} y_1 + E_{65} y_2 + E_{66} z_1 + E_{67} z_2 + E_{68} z_3 & \geq F_6
\end{align*}
\]
Decomposable Structures

Optimization problems with complicating constraint(s)

Example: A linear programming (LP) as the original problem

Minimize \[A_1 x_1 + A_2 x_2 + A_3 x_3 + B_1 y_1 + B_2 y_2 + C_1 z_1 + C_2 z_2 + C_3 z_3 \]

Subject to

Constraints including only variables \(x \)

\[
\begin{align*}
E_{11} x_1 + E_{12} x_2 + E_{13} x_3 & \geq F_1 \\
E_{21} x_1 + E_{22} x_2 + E_{23} x_3 & \geq F_2
\end{align*}
\]

Constraint including only variables \(y \)

\[E_{31} y_1 + E_{32} y_2 \geq F_3 \]

Constraints including only variables \(z \)

\[
\begin{align*}
E_{41} z_1 + E_{42} z_2 + E_{43} z_3 & \geq F_4 \\
E_{51} z_1 + E_{52} z_2 + E_{53} z_3 & \geq F_5
\end{align*}
\]

\[E_{61} x_1 + E_{62} x_2 + E_{63} x_3 + E_{64} y_1 + E_{65} y_2 + E_{66} z_1 + E_{67} z_2 + E_{68} z_3 \geq F_6 \]
Decomposable Structures

Optimization problems with complicating constraint(s)

Example: A linear programming (LP) as the original problem

\[
\text{Minimize } \quad A_1 x_1 + A_2 x_2 + A_3 x_3 + B_1 y_1 + B_2 y_2 + C_1 z_1 + C_2 z_2 + C_3 z_3
\]

Subject to

- Constraints including only variables \(x \)
 - \(E_{11} x_1 + E_{12} x_2 + E_{13} x_3 \geq F_1 \)
 - \(E_{21} x_1 + E_{22} x_2 + E_{23} x_3 \geq F_2 \)

- Constraint including only variables \(y \)
 - \(E_{31} y_1 + E_{32} y_2 \geq F_3 \)

- Constraints including only variables \(z \)
 - \(E_{41} z_1 + E_{42} z_2 + E_{43} z_3 \geq F_4 \)
 - \(E_{51} z_1 + E_{52} z_2 + E_{53} z_3 \geq F_5 \)
 - \(E_{61} x_1 + E_{62} x_2 + E_{63} x_3 + E_{64} y_1 + E_{65} y_2 + E_{66} z_1 + E_{67} z_2 + E_{68} z_3 \geq F_6 \)

Jalal Kazempour
Decomposable Structures

Optimization problems with complicating constraint(s)

Example: A linear programming (LP) as the original problem

Minimize
\[A_1 x_1 + A_2 x_2 + A_3 x_3 + B_1 y_1 + B_2 y_2 + C_1 z_1 + C_2 z_2 + C_3 z_3 \]

Subject to
Constraints including only variables \(x \)
\[E_{11} x_1 + E_{12} x_2 + E_{13} x_3 \geq F_1 \]
\[E_{21} x_1 + E_{22} x_2 + E_{23} x_3 \geq F_2 \]

Constraints including only variables \(y \)
\[E_{31} y_1 + E_{32} y_2 \geq F_3 \]

Constraints including only variables \(z \)
\[E_{41} z_1 + E_{42} z_2 + E_{43} z_3 \geq F_4 \]
\[E_{51} z_1 + E_{52} z_2 + E_{53} z_3 \geq F_5 \]

\[E_{61} x_1 + E_{62} x_2 + E_{63} x_3 + E_{64} y_1 + E_{65} y_2 + E_{66} z_1 + E_{67} z_2 + E_{68} z_3 \geq F_6 \]

This is complicating constraint: If relaxed (removed), then the original problem decomposes to three smaller optimization problems (subproblems)!
Decomposable Structures

Optimization problems with complicating constraint(s)

Example: A linear programming (LP) as the original problem

Subproblem 1:

Minimize \(A_1 x_1 + A_2 x_2 + A_3 x_3 \)

Subject to

Constraints including only variables \(x \)

\[
\begin{align*}
E_{11} x_1 + E_{12} x_2 + E_{13} x_3 & \geq F_1 \\
E_{21} x_1 + E_{22} x_2 + E_{23} x_3 & \geq F_2
\end{align*}
\]
Decomposable Structures

Optimization problems with complicating *constraint(s)*

Example: A linear programming (LP) as the original problem

Subproblem 2:

Minimize \(B_1 y_1 + B_2 y_2 \)

Subject to

Constraint including only variables \(y \)

\[
E_{31} y_1 + E_{32} y_2 \geq F_3
\]
Decomposable Structures

Optimization problems with complicating constraint(s)

Example: A linear programming (LP) as the original problem

Subproblem 3:

Minimize

\[
C_1 z_1 + C_2 z_2 + C_3 z_3
\]

Subject to

Constraints including only variables \(z \)

\[
\begin{align*}
E_{41} z_1 + E_{42} z_2 + E_{43} z_3 & \geq F_4 \\
E_{51} z_1 + E_{52} z_2 + E_{53} z_3 & \geq F_5
\end{align*}
\]

Jalal Kazempour
Decomposable Structures

Optimization problems with complicating constraint(s)

Example: A linear programming (LP) as the original problem

Decomposable matrix with complicating constraint(s)

\[
\begin{align*}
A^T & \quad B^T & \quad C^T \\
\text{Subject to} & \\
E^{[1]} & & \\
E^{[2]} & & \\
E^{[3]} & & \\
E^{[5]} & E^{[6]} & E^{[7]} \\
\end{align*}
\]

\[
\begin{align*}
x & \quad y & \quad z \\
F^{[1]} & \\
F^{[2]} & \\
F^{[3]} & \\
F^{[4]} & \\
\end{align*}
\]
Decomposable Structures

Optimization problems with complicating variable(s)

Example: A linear programming (LP) as the original problem
Decomposable Structures

Optimization problems with complicating variable(s)

Example: A linear programming (LP) as the original problem

Minimize

\[A_1 x_1 + A_2 x_2 + B_1 y_1 + B_2 y_2 + C_1 z_1 + C_2 z_2 + D_1 \beta \]

Subject to

\[E_{11} x_1 + E_{12} x_2 + E_{13} \beta \geq F_1 \]
\[E_{21} x_1 + E_{22} x_2 + E_{23} \beta \geq F_2 \]
\[E_{31} y_1 + E_{32} y_2 + E_{33} \beta \geq F_3 \]
\[E_{41} z_1 + E_{42} z_2 + E_{43} \beta \geq F_4 \]
\[E_{51} z_1 + E_{52} z_2 + E_{53} \beta \geq F_5 \]

Jalal Kazempour
Decomposable Structures

Optimization problems with complicating variable(s)

Example: A linear programming (LP) as the original problem

Minimize

\[
A_1 x_1 + A_2 x_2 + B_1 y_1 + B_2 y_2 + C_1 z_1 + C_2 z_2 + D_1 \beta
\]

Subject to

\[
E_{11} x_1 + E_{12} x_2 + E_{13} \beta \geq F_1
\]
\[
E_{21} x_1 + E_{22} x_2 + E_{23} \beta \geq F_2
\]
\[
E_{31} y_1 + E_{32} y_2 + E_{33} \beta \geq F_3
\]
\[
E_{41} z_1 + E_{42} z_2 + E_{43} \beta \geq F_4
\]
\[
E_{51} z_1 + E_{52} z_2 + E_{53} \beta \geq F_5
\]
Decomposable Structures

Optimization problems with complicating *variable(s)*

Example: A linear programming (LP) as the original problem

Minimize

\[
A_1 x_1 + A_2 x_2 + B_1 y_1 + B_2 y_2 + C_1 z_1 + C_2 z_2 + D_1 \beta
\]

Subject to

\[
\begin{align*}
E_{11} x_1 + E_{12} x_2 + E_{13} \beta & \geq F_1 \\
E_{21} x_1 + E_{22} x_2 + E_{23} \beta & \geq F_2 \\
E_{31} y_1 + E_{32} y_2 + E_{33} \beta & \geq F_3 \\
E_{41} z_1 + E_{42} z_2 + E_{43} \beta & \geq F_4 \\
E_{51} z_1 + E_{52} z_2 + E_{53} \beta & \geq F_5
\end{align*}
\]

\(\beta\) is a *complicating variable*, i.e., if it is fixed to a given value (\(\beta^{\text{fixed}}\)), then the original problem decomposes to 3 smaller problems (subproblems)!

Jalal Kazempour
Decomposable Structures

Optimization problems with complicating variable(s)

Example: A linear programming (LP) as the original problem

Minimize

$$A_1 x_1 + A_2 x_2 + B_1 y_1 + B_2 y_2 + C_1 z_1 + C_2 z_2 + D_1 \beta^{\text{fixed}}$$

Subject to

Constraints including only variables x

$$E_{11} x_1 + E_{12} x_2 \geq F_1 - E_{13} \beta^{\text{fixed}}$$
$$E_{21} x_1 + E_{22} x_2 \geq F_2 - E_{23} \beta^{\text{fixed}}$$

Constraint including only variables y

$$E_{31} y_1 + E_{32} y_2 \geq F_3 - E_{33} \beta^{\text{fixed}}$$

Constraints including only variables z

$$E_{41} z_1 + E_{42} z_2 \geq F_4 - E_{43} \beta^{\text{fixed}}$$
$$E_{51} z_1 + E_{52} z_2 \geq F_5 - E_{53} \beta^{\text{fixed}}$$

β is a complicating variable, i.e., if it is fixed to a given value (β^{fixed}), then the original problem decomposes to 3 smaller problems (subproblems)!

Jalal Kazempour
Decomposable Structures

Optimization problems with complicating variable(s)

Example: A linear programming (LP) as the original problem

Subproblem 1:

Minimize \[A_1 x_1 + A_2 x_2 \]

Subject to

Constraints including only variables \(x \)

\[E_{11} x_1 + E_{12} x_2 \geq F_1 - E_{13} \beta \text{fixed} \]
\[E_{21} x_1 + E_{22} x_2 \geq F_2 - E_{23} \beta \text{fixed} \]
Decomposable Structures

Optimization problems with complicating variable(s)

Example: A linear programming (LP) as the original problem

Subproblem 2:

Minimize $B_1 y_1 + B_2 y_2$

Subject to

Constraint including only variables y

$E_{31} y_1 + E_{32} y_2 \geq F_3 - E_{33} \beta^{\text{fixed}}$

Jalal Kazempour
Decomposable Structures

Optimization problems with complicating \textit{variable(s)}

Example: A linear programming (LP) as the original problem

\textbf{Subproblem 3:}

Minimize \(C_1 z_1 + C_2 z_2 \)

Subject to

Constraints including only variables \(z \)

\[
E_{41} z_1 + E_{42} z_2 \geq F_4 - E_{43} \beta_{\text{fixed}}
\]

\[
E_{51} z_1 + E_{52} z_2 \geq F_5 - E_{53} \beta_{\text{fixed}}
\]
Decomposable Structures

Optimization problems with complicating \textit{variable(s)}

Example: A linear programming (LP) as the original problem

Decomposable matrix with complicating variable(s)

\[
\begin{array}{cccc}
A^T & B^T & C^T & D^T \\
\hline
\text{Subject to} & & & \\
E^{[1]} & & E^{[4]} & \\
E^{[2]} & E^{[5]} & & \\
E^{[3]} & E^{[6]} & & \\
\end{array}
\]

\[
\begin{array}{c}
x \\
y \\
z \\
\beta \\
\end{array}
\times
\begin{array}{c}
F^{[1]} \\
F^{[2]} \\
F^{[3]} \\
\end{array}
=}

Complicating variable

Jalal Kazempour
Exercise:

Seven examples are available in the papers on your table. Please check them in the next 15 minutes, and identify whether they are decomposable problems or not (if so, how?). Then, check your results with your neighbors around the table.
Example 1

Identify whether the following problem is decomposable or not (if so, how!)

Minimize \(-4x_1 - y_1 - 6z_1\)

subject to

\[\begin{align*}
x_1 - x_2 &= 1 \\
x_1 + x_3 &= 3 \\
y_1 - y_2 &= 1 \\
y_1 + y_3 &= 2 \\
z_1 - z_2 &= 1 \\
z_1 + z_3 &= 2 \\
3x_1 + 2y_1 + 4z_1 + w_1 &= 17 \\
x_1, x_2, x_3, y_1, y_2, y_3, z_1, z_2, z_3, w_1 &\geq 0
\end{align*}\]
Example 1

Identify whether the following problem is decomposable or not (if so, how):

Minimize $-4x_1 - y_1 - 6z_1$

subject to

$x_1 - x_2 = 1$
$x_1 + x_3 = 3$
$y_1 - y_2 = 1$
$y_1 + y_3 = 2$
$z_1 - z_2 = 1$
$z_1 + z_3 = 2$

$3x_1 + 2y_1 + 4z_1 + w_1 = 17$

$x_1, x_2, x_3, y_1, y_2, y_3, z_1, z_2, z_3, w_1 \geq 0$

Complicating constraint:
if relaxed, then the original problem decomposes to 3 subproblems

Jalal Kazempour
Example 2

Identify whether the following problem is decomposable or not (if so, how)!

Maximize \[4x_1 + 3x_2 + 2x_3 + 3x_4 + 2x_5 + 3x_6 \]

subject to

\[x_1 - 2x_2 + 2x_6 \leq 3 \]
\[2x_1 + x_2 + x_6 \leq 3 \]
\[-2x_1 + 3x_2 + x_6 \leq 7 \]
\[x_3 + 3x_6 \leq 4 \]
\[2x_3 - x_6 \leq 3 \]
\[x_4 \leq 1 \]
\[2x_4 - 4x_5 + 3x_6 \leq 5 \]
\[3x_4 + x_5 - x_6 \leq 4 \]
Example 2

Identify whether the following problem is decomposable or not (if so, how!)

Maximize \[4x_1 + 3x_2 + 2x_3 + 3x_4 + 2x_5 + 3x_6 \]

subject to

\[x_1 - 2x_2 + 2x_6 \leq 3 \]
\[2x_1 + x_2 + x_6 \leq 3 \]
\[-2x_1 + 3x_2 + x_6 \leq 7 \]
\[x_3 + 3x_6 \leq 4 \]
\[2x_3 - x_6 \leq 3 \]
\[x_4 \leq 1 \]
\[2x_4 - 4x_5 + 3x_6 \leq 5 \]
\[3x_4 + x_5 - x_6 \leq 4 \]

\(x_6 \) is a complicating variable:
if fixed to a given value, then the original problem decomposes to 3 subproblems

Jalal Kazempour
Example 3

Identify whether the following problem is decomposable or not (if so, how!)

Single-node single-hour optimal power flow (OPF) problem (total cost minimization) with 3 conventional generators and a single inelastic load:

Minimize \[10g_1 + 25g_2 + 30g_3 \]

subject to

\[0 \leq g_1 \leq 100 \]
\[0 \leq g_2 \leq 150 \]
\[0 \leq g_3 \leq 200 \]
\[g_1 + g_2 + g_3 = 350 \]
Example 3

Identify whether the following problem is decomposable or not (if so, how!)

Single-node single-hour optimal power flow (OPF) problem (total cost minimization) with 3 conventional generators and a single inelastic load:

Minimize \[10g_1 + 25g_2 + 30g_3 \]
subject to
\[0 \leq g_1 \leq 100 \]
\[0 \leq g_2 \leq 150 \]
\[0 \leq g_3 \leq 200 \]

Complicating constraint: if relaxed, then the original problem decomposes to 3 subproblems, one per generator.

Jalal Kazempour
Example 4

Identify whether the following problem is decomposable or not (if so, how!)

Single-node single-hour optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load:

Maximize \[40d_1 - 10g_1 - 25g_2 - 30g_3 \]

subject to

\[0 \leq g_1 \leq 100 \]
\[0 \leq g_2 \leq 150 \]
\[0 \leq g_3 \leq 200 \]
\[0 \leq d_1 \leq 350 \]
\[g_1 + g_2 + g_3 = d_1 \]
Example 4

Identify whether the following problem is decomposable or not (if so, how!)

Single-node single-hour optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load:

Maximize \[
40d_1 - 10g_1 - 25g_2 - 30g_3
\]

subject to

\[
\begin{align*}
0 & \leq g_1 \leq 100 \\
0 & \leq g_2 \leq 150 \\
0 & \leq g_3 \leq 200 \\
0 & \leq d_1 \leq 350
\end{align*}
\]

\[
g_1 + g_2 + g_3 = d_1
\]

Complicating constraint:
if relaxed, then the original problem decomposes to 4 subproblems, one per agent (generator and demand)

Jalal Kazempour
Example 5

Identify whether the following problem is decomposable or not (if so, how!)

Single-node multi-hour (Index: h) optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load:

Maximize $\sum_h \left[40d_{h,1} - 10g_{h,1} - 25g_{h,2} - 30g_{h,3} \right]$

subject to

$0 \leq g_{h,1} \leq 100 \quad \forall h$

$0 \leq g_{h,2} \leq 150 \quad \forall h$

$0 \leq g_{h,3} \leq 200 \quad \forall h$

$0 \leq d_{h,1} \leq D_{h,1} \quad \forall h$

$g_{h,1} + g_{h,2} + g_{h,3} = d_{h,1} \quad \forall h$

Jalal Kazempour
Example 5

Identify whether the following problem is decomposable or not (if so, how!)

Single-node multi-hour (Index: h) optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load:

Maximize $\sum_h [40d_{h,1} - 10g_{h,1} - 25g_{h,2} - 30g_{h,3}]$

subject to

$0 \leq g_{h,1} \leq 100 \quad \forall h$

$0 \leq g_{h,2} \leq 150 \quad \forall h$

$0 \leq g_{h,3} \leq 200 \quad \forall h$

$0 \leq d_{h,1} \leq D_{h,1} \quad \forall h$

$g_{h,1} + g_{h,2} + g_{h,3} = d_{h,1} \quad \forall h$

Complicating constraints: if relaxed, then the original problem decomposes to a set of subproblems, one per agent per hour.
Example 5

Identify whether the following problem is decomposable or not (if so, how!)

Single-node multi-hour (Index: \(h \)) optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load:

Maximize \(\sum_h [40d_{h,1} - 10g_{h,1} - 25g_{h,2} - 30g_{h,3}] \)

subject to

\[
\begin{align*}
0 & \leq g_{h,1} \leq 100 \quad \forall h \\
0 & \leq g_{h,2} \leq 150 \quad \forall h \\
0 & \leq g_{h,3} \leq 200 \quad \forall h \\
0 & \leq d_{h,1} \leq D_{h,1} \quad \forall h
\end{align*}
\]

- Number of complicating constraints: ?
- Number of subproblem: ?

\(g_{h,1} + g_{h,2} + g_{h,3} = d_{h,1} \quad \forall h \)
Example 5

Identify whether the following problem is decomposable or not (if so, how)!

Single-node multi-hour (Index: h) optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load:

Maximize

$$\sum_{h} [40d_{h,1} - 10g_{h,1} - 25g_{h,2} - 30g_{h,3}]$$

subject to

0 \leq g_{h,1} \leq 100 \quad \forall h

0 \leq g_{h,2} \leq 150 \quad \forall h

0 \leq g_{h,3} \leq 200 \quad \forall h

0 \leq d_{h,1} \leq D_{h,1} \quad \forall h

\begin{align*}
g_{h,1} + g_{h,2} + g_{h,3} &= d_{h,1} \quad \forall h
\end{align*}

- Number of complicating constraints: $|h|
- Number of subproblem: $4|h|$

Jalal Kazempour
Example 6

Identify whether the following problem is decomposable or not (if so, how)!

Single-node multi-hour (Index: \(h \)) optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load (enforcing inter-temporal ramping constraints for one of generators):

\[
\text{Maximize} \quad \sum_{h} \left[40d_{h,1} - 10g_{h,1} - 25g_{h,2} - 30g_{h,3} \right]
\]

subject to

\[
0 \leq g_{h,1} \leq 100 \quad \forall h
\]

\[
0 \leq g_{h,2} \leq 150 \quad \forall h
\]

\[
0 \leq g_{h,3} \leq 200 \quad \forall h
\]

\[
0 \leq d_{h,1} \leq D_{h,1} \quad \forall h
\]

\[
-25 \leq [g_{h,1} - g_{(h-1),1}] \leq 25 \quad \forall h
\]

\[
g_{h,1} + g_{h,2} + g_{h,3} = d_{h,1} \quad \forall h
\]

Jalal Kazempour
Example 6

Identify whether the following problem is decomposable or not (if so, how!)

Single-node multi-hour (Index: h) optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load (enforcing inter-temporal ramping constraints for one of generators):

Maximize \[\sum_h \left[40d_{h,1} - 10g_{h,1} - 25g_{h,2} - 30g_{h,3} \right] \]

subject to

\[
\begin{align*}
0 & \leq g_{h,1} \leq 100 \quad \forall h \\
0 & \leq g_{h,2} \leq 150 \quad \forall h \\
0 & \leq g_{h,3} \leq 200 \quad \forall h \\
0 & \leq d_{h,1} \leq D_{h,1} \quad \forall h \\
-25 & \leq [g_{h,1} - g_{(h-1),1}] \leq 25 \quad \forall h \\
g_{h,1} + g_{h,2} + g_{h,3} & = d_{h,1} \quad \forall h
\end{align*}
\]

Investigate the following three options:

1) relax ramping constraints only,
2) relax balance constraints only,
3) relax both.

Jalal Kazempour
Example 6

Identify whether the following problem is decomposable or not (if so, how)!

Single-node multi-hour (Index: \(h \)) optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load (enforcing inter-temporal ramping constraints for one of generators):

Maximize \[\sum_{h} [40d_{h,1} - 10g_{h,1} - 25g_{h,2} - 30g_{h,3}] \]

subject to

\[
\begin{align*}
0 & \leq g_{h,1} \leq 100 \quad \forall h \\
0 & \leq g_{h,2} \leq 150 \quad \forall h \\
0 & \leq g_{h,3} \leq 200 \quad \forall h \\
0 & \leq d_{h,1} \leq D_{h,1} \quad \forall h \\
-25 & \leq [g_{h,1} - g_{(h-1),1}] \leq 25 \quad \forall h
\end{align*}
\]

Option 1:

- Number of complicating constraints: ?
- Number of subproblem: ?

Jalal Kazempour
Example 6

Identify whether the following problem is decomposable or not (if so, how!)

Single-node multi-hour (Index: h) optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load (enforcing inter-temporal ramping constraints for one of generators):

Maximize \[\sum_{h} [40d_{h,1} - 10g_{h,1} - 25g_{h,2} - 30g_{h,3}] \]

subject to

1. \(0 \leq g_{h,1} \leq 100 \quad \forall h \)
2. \(0 \leq g_{h,2} \leq 150 \quad \forall h \)
3. \(0 \leq g_{h,3} \leq 200 \quad \forall h \)
4. \(0 \leq d_{h,1} \leq D_{h,1} \quad \forall h \)
5. \(-25 \leq [g_{h,1} - g_{(h-1),1}] \leq 25 \quad \forall h \)
6. \(g_{h,1} + g_{h,2} + g_{h,3} = d_{h,1} \quad \forall h \)

Option 1:
- Number of complicating constraints: \(|h| \)
- Number of subproblem: \(|h| \)

Jalal Kazempour
Example 6

Identify whether the following problem is decomposable or not (if so, how)!

Single-node multi-hour (Index: \(h \)) optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load (enforcing inter-temporal ramping constraints for one of generators):

Maximize \(\sum_h \left[40d_{h,1} - 10g_{h,1} - 25g_{h,2} - 30g_{h,3} \right] \)

subject to

\(0 \leq g_{h,1} \leq 100 \quad \forall h \)
\(0 \leq g_{h,2} \leq 150 \quad \forall h \)
\(0 \leq g_{h,3} \leq 200 \quad \forall h \)
\(0 \leq d_{h,1} \leq D_{h,1} \quad \forall h \)
\(-25 \leq [g_{h,1} - g_{(h-1),1}] \leq 25 \quad \forall h \)

\(g_{h,1} + g_{h,2} + g_{h,3} = d_{h,1} \quad \forall h \)

Option 2:

- Number of complicating constraints: ?
- Number of subproblem: ?

Jalal Kazempour
Example 6

Identify whether the following problem is decomposable or not (if so, how)!

Single-node multi-hour (index: h) optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load (enforcing inter-temporal ramping constraints for one of generators):

\[
\text{Maximize} \sum_{h} \left[40d_{h,1} - 10g_{h,1} - 25g_{h,2} - 30g_{h,3} \right]
\]

subject to

- \(0 \leq g_{h,1} \leq 100 \quad \forall h \)
- \(0 \leq g_{h,2} \leq 150 \quad \forall h \)
- \(0 \leq g_{h,3} \leq 200 \quad \forall h \)
- \(0 \leq d_{h,1} \leq D_{h,1} \quad \forall h \)

\[-25 \leq [g_{h,1} - g_{(h-1),1}] \leq 25 \quad \forall h \]

\[g_{h,1} + g_{h,2} + g_{h,3} = d_{h,1} \quad \forall h\]

Option 2:

- Number of complicating constraints: \(|h|\)
- Number of subproblem: \(3|h|+1\)

Jalal Kazempour
Example 6

Identify whether the following problem is decomposable or not (if so, how):

Single-node multi-hour (Index: \(h \)) optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load (enforcing inter-temporal ramping constraints for one of generators):

Maximize \[\sum_h \left[40d_{h,1} - 10g_{h,1} - 25g_{h,2} - 30g_{h,3} \right] \]

subject to

\[0 \leq g_{h,1} \leq 100 \quad \forall h \]
\[0 \leq g_{h,2} \leq 150 \quad \forall h \]
\[0 \leq g_{h,3} \leq 200 \quad \forall h \]
\[0 \leq d_{h,1} \leq D_{h,1} \quad \forall h \]

\[-25 \leq [g_{h,1} - g_{(h-1),1}] \leq 25 \quad \forall h \]

\[g_{h,1} + g_{h,2} + g_{h,3} = d_{h,1} \quad \forall h \]

Option 3:

- Number of complicating constraints: ?
- Number of subproblem: ?
Example 6

Identify whether the following problem is decomposable or not (if so, how!)

Single-node multi-hour (Index: h) optimal power flow (OPF) problem (social welfare maximization) with 3 conventional generators and a single elastic load (enforcing inter-temporal ramping constraints for one of generators):

Maximize $\sum_h [40d_{h,1} - 10g_{h,1} - 25g_{h,2} - 30g_{h,3}]$

subject to

$0 \leq g_{h,1} \leq 100 \quad \forall h$

$0 \leq g_{h,2} \leq 150 \quad \forall h$

$0 \leq g_{h,3} \leq 200 \quad \forall h$

$0 \leq d_{h,1} \leq D_{h,1} \quad \forall h$

$-25 \leq [g_{h,1} - g_{(h-1),1}] \leq 25 \quad \forall h$

$g_{h,1} + g_{h,2} + g_{h,3} = d_{h,1} \quad \forall h$

Option 3:
- Number of complicating constraints: $2|h|$
- Number of subproblem: $4|h|$
Example 7

Identify whether the following problem is decomposable or not (if so, how!)

Single-node single-year (static) generation expansion problem (GEP), considering two existing generators (units 1 and 2) and one candidate generator (unit 3)

Minimize
\[15000x_3 + \sum_h \left[10g_{h,1} + 25g_{h,2} + 30g_{h,3} \right] \]

subject to
\[
\begin{align*}
0 &\leq g_{h,1} \leq 100 & \forall h \\
0 &\leq g_{h,2} \leq 150 & \forall h \\
0 &\leq g_{h,3} \leq x_3 & \forall h \\
g_{h,1} + g_{h,2} + g_{h,3} &= D_{h,1} & \forall h \\
x_3 &\geq 0
\end{align*}
\]
Example 7

Identify whether the following problem is decomposable or not (if so, how!)

Single-node single-year (static) generation expansion problem (GEP), considering two existing generators (units 1 and 2) and one candidate generator (unit 3)

Minimize \[15000x_3 + \sum_{h} \left[10g_{h,1} + 25g_{h,2} + 30g_{h,3} \right] \]

subject to

\[0 \leq g_{h,1} \leq 100 \quad \forall h \]
\[0 \leq g_{h,2} \leq 150 \quad \forall h \]
\[0 \leq g_{h,3} \leq x_3 \quad \forall h \]
\[g_{h,1} + g_{h,2} + g_{h,3} = D_{h,1} \quad \forall h \]
\[x_3 \geq 0 \]

Investigate the following two options:
1) \(x_3 \) is a complicating variable,
2) Balance conditions are complicating constraints.

Jalal Kazempour
Example 7

Identify whether the following problem is decomposable or not (if so, how!)

Single-node single-year (static) generation expansion problem (GEP), considering two existing generators (units 1 and 2) and one candidate generator (unit 3)

Minimize $\sum_{h} [10g_{h,1} + 25g_{h,2} + 30g_{h,3}]$

subject to

$0 \leq g_{h,1} \leq 100 \quad \forall h$

$0 \leq g_{h,2} \leq 150 \quad \forall h$

$0 \leq g_{h,3} \leq x_{3} \quad \forall h$

$g_{h,1} + g_{h,2} + g_{h,3} = D_{h,1} \quad \forall h$

$x_{3} \geq 0$

Option 1 (fixing x_{3}):

- Number of complicating variables: ?
- Number of subproblem: ?

Jalal Kazempour
Example 7

Identify whether the following problem is decomposable or not (if so, how!)

Single-node single-year (static) generation expansion problem (GEP), considering two existing generators (units 1 and 2) and one candidate generator (unit 3)

Minimize

\[
15000x_3 + \sum_{h} \left[10g_{h,1} + 25g_{h,2} + 30g_{h,3} \right]
\]

subject to

\[
\begin{align*}
0 & \leq g_{h,1} \leq 100 \quad \forall h \\
0 & \leq g_{h,2} \leq 150 \quad \forall h \\
0 & \leq g_{h,3} \leq x_3 \quad \forall h \\
g_{h,1} + g_{h,2} + g_{h,3} & = D_{h,1} \quad \forall h \\
x_3 & \geq 0
\end{align*}
\]

Option 1 (fixing \(x_3\)):

- Number of complicating variables: 1
- Number of subproblem: |\(h\)|
Example 7

Identify whether the following problem is decomposable or not (if so, how!)

Single-node single-year (static) generation expansion problem (GEP), considering two existing generators (units 1 and 2) and one candidate generator (unit 3)

Minimize \(15000x_3 + \sum_h [10g_{h,1} + 25g_{h,2} + 30g_{h,3}] \)

subject to

\[
\begin{align*}
0 & \leq g_{h,1} \leq 100 \quad \forall h \\
0 & \leq g_{h,2} \leq 150 \quad \forall h \\
0 & \leq g_{h,3} \leq x_3 \quad \forall h \\
\sum h g_{h,1} + g_{h,2} + g_{h,3} & = D_{h,1} \quad \forall h \\
x_3 & \geq 0
\end{align*}
\]

Option 2 (relaxing balance constraints):

- Number of complicating constraints: ?
- Number of subproblem: ?

Jalal Kazempour
Example 7

Identify whether the following problem is decomposable or not (if so, how!)

Single-node single-year (static) generation expansion problem (GEP), considering two existing generators (units 1 and 2) and one candidate generator (unit 3)

Minimize \(15000x_3 + \sum_h [10g_{h,1} + 25g_{h,2} + 30g_{h,3}] \)

subject to

\[0 \leq g_{h,1} \leq 100 \quad \forall h \]
\[0 \leq g_{h,2} \leq 150 \quad \forall h \]
\[0 \leq g_{h,3} \leq x_3 \quad \forall h \]
\[g_{h,1} + g_{h,2} + g_{h,3} = D_{h,1} \quad \forall h \]
\[x_3 \geq 0 \]

Option 2 (relaxing balance constraints):

- Number of complicating constraints: \(|h|\)
- Number of subproblem: \(2|h|+1\)

Jalal Kazempour
Thanks for your attention!

Email: seykaz@elektro.dtu.dk